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ABSTRACT:
Non-native earthworm invasions in north-temperate North America cause substantial adverse effects to 
hardwood forest ecosystems. Quantification of invasions is necessary for understanding impacts and 
identifying remnant earthworm-free areas, but existing sampling techniques are effort-intensive and/or 
environmentally damaging. We: (1) developed and applied a protocol that allows rapid classification of 
earthworm invasion into five stages based primarily on visual assessment of the forest floor, (2) sampled 
earthworms to test whether the protocol’s stages can predict invasion by different species, and (3) assessed 
relationships between individual forest floor characteristics and presence of different earthworm species. 
Based on differences in biomass among points assigned to different stages, the 5-stage classification 
protocol accurately identified the onset of invasion by Lumbricus rubellus and Lumbricus terrestris, the 
species of greatest management concern in the northern Midwest. Except for middens as a predictor of 
L. terrestris presence, no forest floor variable was useful by itself for assessing invasions. The 5-stage 
protocol provides an efficient approach for assessing earthworm invasions in hardwood forests of the 
U.S. northern Midwest, can be implemented with minimal training, and serves as a blueprint for similar 
protocols in other regions experiencing earthworm invasions.

Index terms: earthworm sampling methods, invasive earthworms, Lumbricus rubellus, Lumbricus ter-
restris, northern hardwood forests

INTRODUCTION

Non-native European earthworms are 
invading previously earthworm-free re-
gions of north-temperate North America, 
substantially changing hardwood forests 
(Frelich et al. 2006) and posing a major 
conservation concern (Sutherland et al. 
2010). Invasive earthworms, particularly 
Lumbricus spp., consume organic lay-
ers, mix soil horizons (Alban and Barry 
1994; Hale et al. 2005b), and alter nutrient 
dynamics (Burtelow et al. 1998; Costello 
and Lamberti 2008). Changes to the soil 
eliminate sensitive plant species (Gun-
dale 2002), reduce cover and diversity 
of herbaceous plants and tree seedlings, 
and increase cover of sedges and grasses 
(Hale et al. 2006; Holdsworth et al. 2007a). 
These changes can reduce abundance 
of salamanders (Maerz et al. 2009) and 
ground-nesting songbirds (Loss and Blair 
2011; Loss et al. 2012).

Preventing further spread of earthworms 
and mitigating effects to soil, plants, 
and vertebrates requires identification of 
remnant earthworm-free natural areas and 
quantification of invasion across broad 
spatial scales. Several earthworm sampling 
techniques exist (reviewed by Butt and 
Grigoropoulou 2010), including removal 
and hand-sorting of the soil (Raw 1960; 
Coja et al. 2008), electrical extraction 
(Weyers et al. 2008), and liquid extraction 
with permanganate (Svendsen 1955), for-
malin (Raw 1959; Callaham and Hendrix 

1997), or a mustard-water mixture (Law-
rence and Bowers 2002; Hale et al. 2005b). 
These methods are effort-intensive, which 
precludes efficient sampling at a large 
number of sites. Some of the methods are 
also physically destructive or require use 
of environmentally toxic substances.

Mustard extraction is commonly used 
in studies of earthworm invasion (e.g., 
Kourtev et al. 1999; Cameron et al. 2007). 
This method is environmentally friendly 
and provides an accurate index of species 
composition and abundance (Gunn 1992; 
Lawrence and Bowers 2002; Eisenhauer et 
al. 2008), especially for the deep-burrowing 
L. terrestris (Chan and Munro 2001). How-
ever, the method requires substantial time 
and effort because large quantities of water 
must often be transported long distances 
into remote areas. In one ecological study, 
field sampling with mustard extraction at 
112 points within a 25-km radius required 
80 hours of fieldwork (1.4 points/hr, Loss 
and Blair 2011); and in another study, 
sampling at 36 points scattered across 
two national forests required 180 hours of 
fieldwork (0.2 points/hr, Loss et al. 2012). 
In addition, earthworms must be identified 
and measured to estimate biomass upon 
returning from the field. Development of 
a protocol that provides a more efficient 
means for assessing earthworm invasion 
will benefit conservation, management, 
and research that requires mapping of 
invasion at fine resolution or across broad 
spatial extents.
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Earthworm invasions in the U.S. north-
ern Midwest involve multiple species 
and are thought to progress through five 
sequential stages, with earthworm-free 
conditions in stage 1 and the onset of 
invasion by different taxa in subsequent 
stages (stage 2 – Dendrobaena octae-
dra; stage 3 – Lumbricus juveniles and 
Aporrectodea spp.; stage 4 – L. rubellus; 
stage 5 – L. terrestris) (Holdsworth et al. 
2007b). Because invasion by additional 
species of earthworms compounds effects 
on the forest floor (Frelich et al. 2006), 
and because earthworm effects are highly 
visible, it may be possible to use forest 
floor characteristics (e.g., litter depth, 
sedge cover, and earthworm castings and 
middens) to identify the onset of invasion 
by these different species.

In hardwood forests of the U.S. northern 
Midwest, we: (1) developed and applied 
a protocol that allows rapid classifica-
tion of earthworm invasion into one of 
five stages based primarily on visual as-
sessment of the forest floor, (2) directly 
sampled earthworms to test whether the 
protocol’s stages accurately predicted the 
onset of invasion by different species, and 
(3) assessed relationships between several 
forest floor measurements and presence of 
different earthworm species, including L. 
rubellus and L. terrestris, the species with 
the greatest impact in northern Midwest 
forests.

METHODS

Study Area and Point Selection

We collected data from two different study 
areas, one in northeast Minnesota and one 
in northwest Wisconsin (Figure 1). Min-
nesota data were collected in nine state 
parks along Lake Superior’s north shore 
(47°N, 92°W to 48°N, 90°W; hereafter, 
“Minnesota points”). Wisconsin data were 
collected at bird nests in earthworm-free 
and invaded stands in the Chequamegon-
Nicolet National Forest (46°N, 91°W; 
hereafter, “Wisconsin points”).

Loss and Blair (2011) reported detailed 
selection methods for the Wisconsin points. 
We collected data at 271 ovenbird (Seiurus 
aurocapilla) and hermit thrush (Catharus 
guttatus) nests that were monitored in 2009 
(n = 112) and 2010 (n = 159). All nests 
were in upland-mesic sugar maple (Acer 
saccharum) and sugar maple-basswood 
(Tilia americana) forest sites that were > 
60 years old, on sandy loam or loamy sand 
soils, and had no timber removed in the last 
40 years. Earthworm sampling confirmed 
that sites represented earthworm-free, 
partially invaded, and completely invaded 
forest stands (Holdsworth et al. 2007a; 
Loss and Blair 2011).

The nine state parks containing the Min-

nesota points were in the North Shore 
Highlands subsection of Minnesota’s 
Ecological Classification System. We used 
ArcMap (version 9.3) (ESRI 2008) and a 
forest type data layer from the Minnesota 
Native Plant Community Classification 
(Minnesota Department of Natural Re-
sources 2011) to locate 2000 random 
points. Field sampling was conducted at 
a random subset of 163 of these points. 
The number of points sampled in each 
park was proportional to the park’s size, 
and the number of points sampled in each 
forest type was proportional to its cover 
on the landscape.

The 163 points represented 25 forest types 
consisting of different combinations of 
dominant, co-dominant, and sub-canopy 
tree species. The dominant canopy species 
were quaking aspen (Populus tremuloides), 
paper birch (Betula papyrifera), and sugar 
maple. The co-dominant and sub-canopy 
species were balsam fir (Abies balsamea), 
white spruce (Picea glauca), black spruce 
(P. mariana), white cedar (Thuja occi-
dentalis), white pine (Pinus strobus), red 
pine (P. resinosa), yellow birch (Betula 
alleghaniensis), red maple (Acer rubrum), 
red oak (Quercus rubra), basswood, black 
ash (Fraxinus nigra), and big-tooth aspen 
(Populus grandidentata). Much of the 
analysis for Minnesota focused on points 
in aspen-birch and sugar maple forests, the 
most widespread hardwood forest types in 
the region.

Figure 1. Study area location in the eastern U.S. (A), Minnesota study sites (numbers) along the north shore of Lake Superior (B), and Wisconsin study sites 
(black squares) in the Chequamegon-Nicolet National Forest (C). Numbers in (B) refer to the following state parks: (1) Jay Cooke; (2) Gooseberry Falls; (3) 
Split Rock; (4) Tettegouche; (5) Crosby Manitou; (6) Temperance River; (7) Cascade River; (8) Judge C.R. Magney; (9) Grand Portage.
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Measurement of Forest Floor 
Variables

We measured the forest floor at all points, 
but methods and variables measured dif-
fered between Wisconsin and Minnesota 
points. At Wisconsin points, vegetation and 
the leaf litter layer were measured between 
15–31 July of 2009 or 2010. Within a 2-m 
x 2-m square centered on each nest, we 
visually estimated percent cover of the 
litter layer, maple seedlings < 50 cm tall, 
all sedges and grasses combined, and total 
ground vegetation (all grasses, sedges, her-
baceous plants, and woody plants < 50 cm 
tall). Cover estimates were to the nearest 
10%. Average litter depth (Oi, Oe, and Oa 
horizons combined) was measured based 
on four measurements taken 1 m from the 
nest at each cardinal direction and by push-
ing a metal skewer through the litter until 
meeting resistance from rock or mineral 
soil. For litter depth and cover estimates, 
only intact, accumulated leaf litter > 1 year 
old was measured because presence and 
depth of the uppermost leaves from the pre-
vious autumn is independent of earthworm 
invasions. We also counted earthworm mid-
dens, piles of organic material at burrow 
entrances created by L. terrestris (Figure 
2) (Raw 1959; Butt and Grigoropoulou 
2010), within 33-cm x 33-cm sub-plots 
from which earthworms were directly 
sampled (described in later sub-section). 
We counted every other midden that fell 
roughly 50% within the sub-plot.

At Minnesota points, the forest floor was 
measured between 1 June–31 August 2009. 
Because the state parks span > 150 km 
from south to north and experience dif-
ferent timing of seasonal temperature and 
moisture patterns, parks were surveyed 
in a random order to avoid confounding 
effects of climate. We collected all data 
within a 5-m radius centered on each 
point. Fragmentation of the litter layer was 
classified into one of three categories that 
reflect increasing earthworm decomposi-
tion (1 – Intact, layered forest floor, Oi, Oe, 
and Oa horizons present; 2 – Litter layer 
partially fragmented, but with litter from 
> 1 yr; 3 – No intact litter, only freshly 
fallen leaves from the previous autumn). 
Earthworm activity was visually estimated 
using an earthworm casting index (1 - 

Castings absent; 2 - Castings present, ≤ 
50% of forest floor covered; 3 - Castings 
abundant, > 50% of forest floor covered) 
(see Figure 2 for photograph of casting 
material) and midden index (1 - Middens 
absent; 2 - Middens present, ≤ 9 middens 
in 5-m radius; 3 - Middens abundant, ≥ 
10 middens in 5-m radius).We extracted 
soil cores (6 cm diameter; 15 cm depth) 
from 3 random locations and used them to 
measure depth of the litter layer (Oi, Oe, 
and Oa horizons combined) and A-horizon. 
Soil textural class was determined for the 
mineral soil component of each core using 
a manual texture key adapted from Brewer 
and McCann (1982). Finally, we used a 
variable radius plot and BAF 10 wedge 
prism to sample tree species and estimate 
relative dominance (i.e., proportional rep-
resentation by each tree species).

The 5-Stage Invasion Classification 
Protocol

At Minnesota points, we used a dichoto-
mous key (Table 1) that incorporated 
several of the above forest floor measure-
ments to classify points into one of five 
earthworm invasion stages. The stages were 
designed to identify the onset of invasion 
by different species following Holdsworth 
et al. (2007b) (stage 1 – potentially earth-
worm-free; stage 2 – D. octaedra; stage 3 
– Lumbricus juveniles and Aporrectodea 
spp.; stage 4 – L. rubellus; stage 5 – L. 
terrestris). The dichotomous key was based 
on casting and midden indices, degree of 
litter fragmentation, and on observation 
of fine root presence in the O-horizon, 
because fine root abundance decreases 

following invasion (Fisk et al. 2004; Hale 
et al. 2005b).

Earthworm Sampling

Earthworms were sampled using the liquid-
mustard extraction technique (Lawrence 
and Bowers 2002; Hale et al. 2005a), 
which consists of pouring a mustard-water 
mixture (40 g ground yellow mustard, 4 L 
water) on the soil surface and collecting 
all emerging earthworms. At Wisconsin 
points, sampling was conducted between 15 
September–5 October of 2009 or 2010. At 
Minnesota points, sampling was conducted 
between 1 September–15 October 2009. 
This sampling timeframe corresponds to a 
period of soil moisture conditions favorable 
for earthworms and in which the population 
contains a high proportion of adults.

At Wisconsin points, we sampled one-
third of the 2009 points (n = 36) using 
three 33-cm x 33-cm subplots (one at the 
nest, two random points ≤ 33 m from the 
nest) and two-thirds of points (n = 76) 
using one plot at the nest. Because there 
was no significant difference in biomass 
of different earthworm species between 
one-plot and 3-subplot points, we sampled 
all 2010 points with one plot at the nest 
(Loss and Blair 2011). At all Minnesota 
points, earthworms were sampled from 
three randomly selected 33-cm x 33-cm 
subplots within 5-m radius plots.

Earthworms were preserved in the field 
with 70% isopropyl alcohol and transferred 
to buffered 10% formalin for storage. We 
counted, identified, and measured length 
of earthworms using a dissecting micro-

Figure 2. Earthworm casting material (a) and Lumbricus terrestris middens (b).
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scope. Adult earthworms were identified to 
species when possible, but most juvenile 
earthworms were only identifiable to ge-
nus. All Aporrectodea earthworms were 
grouped together, because most individuals 
were juveniles, and adult A. caliginosa, 
A. longa, A. rosea, A. trapezoides, and A. 
tuberculata are morphologically similar 
(Hale 2007). We used length measure-
ments and regression equations based on 
allometric relationships (Hale et al. 2004) 
to estimate earthworm biomass.

Data Analyses

We averaged earthworm biomass (all 
points) and midden counts (Wisconsin 

points) across subplots to calculate point-
level values and used tree dominance 
estimates to field-truth forest types at 
Minnesota points. The forest type at some 
points did not match the type indicated 
during point selection; therefore, for sta-
tistical analyses conducted separately by 
forest type, forest types were classified 
using field-collected dominance estimates 
(aspen-birch = combined dominance of 
all aspen and birch species ≥ 0.5; sugar 
maple = dominance of sugar maple ≥ 0.4). 
Because different forest floor assessment 
methods were used for Wisconsin and Min-
nesota points, all analyses were conducted 
separately for each state.

For Minnesota points, we compared earth-
worm biomasses among points classified 

into the five invasion stages. Because the 
distribution of biomass values was skewed 
with zeroes, we were unable to achieve 
normal distribution of the data. Biomasses 
were compared with one-way Kruskal-
Wallace tests and pairwise comparisons 
between group medians using Mann-
Whitney U-tests. Separate analyses were 
conducted for D. octaedra, Aporrectodea 
spp., L. rubellus, and L. terrestris.

Multivariate logistic regression was used 
to assess relationships between forest floor 
characteristics and presence of the four 
earthworm taxa noted above. For Wisconsin 
points, continuous independent variables 
were cover of sedge, maple seedlings, 
total ground vegetation, and leaf litter, as 

Table 1. Dichotomous key for 5-stage rapid classification of earthworm invasion in hardwood forests of the northern Midwest. Details of measurement 
methods are in the text.
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well as litter depth and midden count. A 
categorical year covariate was also included 
to account for temperature and moisture 
variation between 2009 and 2010 that 
could have affected earthworm sampling 
results. For Minnesota points, the continu-
ous independent variables were litter depth 
and A-horizon depth, and the categorical 
variables were the litter fragmentation, 
casting, and midden indices. For Min-
nesota points, regression analyses were 
conducted separately for aspen-birch (n 
= 79) and sugar maple forests (n = 42). A 
preliminary analysis indicated no statisti-
cally significant relationships between soil 
texture and presence of different earthworm 
species within the above forest types, and 
soil texture variation was minimal within 
each type. Therefore, soil texture was likely 
not a major determinant of earthworm 
presence within each forest type; and to 
simplify regression models, we did not 
include this factor as a covariate.

RESULTS

Of the 271 Wisconsin points, 70 (25.8%) 
had no earthworms detected. All 163 
Minnesota points had at least one earth-
worm detected; however, samples from 
three points (1.8%) only contained D. 
octaedra. For the Wisconsin and Minne-
sota points, 174 (64.2%) and 32 (19.6%) 
points, respectively, had no L. rubellus or 
L. terrestris detected but were invaded by 
D. octaedra, Aporrectodea, and/or other 
earthworm species.

EFFICIENCY AND ACCURACY 
OF THE 5-STAGE INVASION 
CLASSIFICATION PROTOCOL

Characterization of the forest floor using 
the 5-stage classification protocol required 
between 5-8 minutes of sampling per point. 
Minnesota points were assigned to all five 
stages, including stage 1 (n = 4; 2.5%), 
stage 2 (n = 11; 6.7%), stage 3 (n = 72; 
44.2%), stage 4 (n = 43; 26.4%), and stage 
5 (n = 33; 20.2%). Because very few Min-
nesota points were classified as potentially 
earthworm-free, we did not include stage 1 

in pairwise comparisons of biomass.

D. octaedra biomass was highest at points 
assigned to invasion stage 2; however, there 
were no statistically significant biomass 
differences among stages for this species 
(H = 5.44, df = 3, p = 0.14) (Figure 3a). 
Aporrectodea biomass was significantly 
different among stages (H = 8.48, df = 
3, p = 0.04), with biomass significantly 
lower in stage 3 than in stages 4 and 5 
but not different between stage 2 and 3 or 
among stages 2, 4, and 5 (Figure 3b). For 
L. rubellus, we found significant biomass 
differences among stages (H = 22.74, df = 
3, p < 0.01), with biomass in stage 3 sig-
nificantly greater than all other stages and 
significant biomass decreases in both stages 
4 and 5 (Figure 3c). For L. terrestris, there 
was a significant difference among invasion 
stages (H = 49.40, df = 3, p < 0.01), with 
biomass for level 5 greater than all other 
levels and biomass for level 4 greater than 
for level 3 (Figure 3d).

Relationships between Forest Floor 
Variables and Earthworm Presence

We found statistically significant rela-
tionships between individual forest floor 
variables and presence of each earthworm 
taxa and for both Wisconsin and Minnesota 
points (see Table 2 for β-coefficients and 
p-values). For Wisconsin points, presence 
of D. octaedra was positively related to 
sedge cover (odds-ratio=1.40). For Apor-
rectodea, there was an inverse relation-
ship between presence and litter cover at 
Wisconsin points (odds-ratio=0.40) and a 
positive relationship between presence and 
A-horizon depth for Minnesota points in 
both forest types (odds-ratioaspen-birch=1.55; 
odds-ratiosugar maple=1.57).

Presence of L. rubellus at Wisconsin points 
was positively related to sedge cover (odds-
ratio=1.41), total ground cover (odds-ra-
tio=2.10), and L. terrestris midden count 
(odds-ratio=1.49), and inversely related to 

Figure 3. Mean earthworm biomass (± SE) for points classified into 5 earthworm invasion stages along 
the north shore of Lake Superior, Minnesota: Dendrobaena octaedra (a), Aporrectodea spp. (b), Lumbricus 
rubellus (c), and Lumbricus terrestris (d). Lower-case letters indicate differences among group medians 
based on Kruskal Wallace and Mann-Whitney U-tests. Units on vertical axis are different for each spe-
cies; stage 1 was not included in pairwise comparisons due to small sample sizes.
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maple seedling cover (odds-ratio=0.71). At 
Minnesota points, there were no statisti-
cally significant predictors of L. rubellus 
presence. However, there were near-sig-
nificant (p ≤ 0.10) positive relationships 
between L. rubellus presence and casting 
index in both forest types, and odds-ratios 
for these relationships were relatively high 
(odds-ratioaspen-birch=3.73; odds-ratiosugar 

maple=13.61). Presence of L. terrestris was 
positively related to midden counts at 
Wisconsin points (odds-ratio=1.53) and 
to the midden index at Minnesota points, 
but with a much stronger relationship in 
sugar maple forests (odds ratio=38.02) than 
aspen-birch forests (odds ratio=3.67).

DISCUSSION

We found that the 5-stage classification 
protocol identified the onset of invasion by 
L. rubellus and L. terrestris, the earthworm 
species of greatest management concern in 
forests of the northern Midwest. Biomass of 
these species differed significantly among 
points assigned to different stages, with 
stage 3 characterized by peak L. rubellus 
invasion, and stages 4 and 5 characterized 
by the onset and eventual dominance, 
respectively, of invasion by L. terrestris. 
We also found that the presence of each 
earthworm taxa was significantly related 
to at least one forest floor variable, but, 
except for midden count and midden index 
as predictors of L. terrestris presence, no 
single variable is likely to be useful for 
rapid assessment of earthworm presence.

Use of the 5-stage Classification 
Protocol for Predicting Species 
Invasions

With some exceptions, the differences 
in sampled earthworm biomasses sug-
gest that the 5-stage classification system 
identifies the sequential onset of invasion 
by different species and is, therefore, a 
useful tool for quickly quantifying earth-
worm invasions in hardwood forests of 
the northern Midwest. Holdsworth et al. 
(2007b) observed a predictable invasion 
sequence, with D. octaedra invading first, 
followed by Aporrectodea and Lumbricus 
juveniles, then L. rubellus, and finally L. 
terrestris. Different species compositions 

are thought to be a function of time since 
original invasion (Hale et al. 2005a) and 
rate and mechanism of dispersal (Proulx 
2003; Cameron et al. 2007; Costello et 
al. 2010). Greater replication is needed to 
determine the accuracy of stages 1 and 2 
of our protocol for identifying potentially 
earthworm-free and D. octaedra-invaded 
forests, respectively. However, even with 
a small sample of points assigned to stage 
2 (n = 11), this stage had greater D. oc-
taedra biomass than any other, suggesting 
the potential for the protocol to accurately 
identify invasion by this species. Protocol 
stage 3 corresponds to the onset of L. rubel-
lus invasion, and stages 4 and 5 correspond 
to the onset and eventual dominance of L. 
terrestris invasion, respectively.

Whereas we observed that onset of L. ru-
bellus invasion occurred in stage 3 of our 
protocol, Holdsworth et al. (2007b) first 
observed this species in a fourth stage, 
immediately following invasion by Apor-
rectodea and Lumbricus juveniles. How-
ever, because they observed Lumbricus 
juveniles in the third invasion stage, and 
because these individuals likely included 
L. rubellus, invasion by this species prob-
ably also occurred in Holdsworth et al.’s 
(2007b) stage 3. The observed differences 
in Aporrectodea biomass among stages 
were unexpected. Instead of stage 3 being 
characterized by the onset of Aporrecto-
dea invasion, this stage had the lowest 
observed biomass among stages where it 
was present, and there were no biomass 
differences among the other stages. The 
5-stage protocol, therefore, does not appear 
to diagnose onset of invasion by this group. 
This negative finding may have resulted 
from our grouping of all Aporrectodea 
spp. in statistical analyses, an approach 
that may have obscured unique effects of 
different species to the forest floor.

Relationships between Forest Floor 
Variables and Earthworm Presence

Our results suggest that observing the 
presence and abundance of middens on 
the forest floor is an efficient way to as-
sess whether forests are invaded by L. 
terrestris, and, therefore, whether they 
have reached the late stages (4 and 5) of 

earthworm invasion. With each additional 
midden counted, L. terrestris was 1.5 times 
more likely to be sampled in sugar maple 
forest; and with each stepwise increase in 
the midden index, sampling of L. terrestris 
in aspen-birch and sugar maple forests was 
3.7 and 38.0 times more likely, respec-
tively. For all points combined, sensitivity 
(i.e., accurate assessment of known L. 
terrestris presence by midden counts ≥ 1 
or index = present or abundant) was 91% 
and specificity (i.e., correct assessment of 
known absence by counts of zero middens 
or index = absent) was 77%. Furthermore, 
the specificity estimate may be conserva-
tive because this deep-burrowing species 
likely escaped detection during mustard 
sampling at some points where middens 
were observed.

Although we found significant relation-
ships between individual variables and 
presence of each earthworm taxa, no forest 
floor characteristic other than middens is 
likely to be useful by itself for rapidly as-
sessing invasion by different species. There 
was a non-significant positive relationship 
between L. rubellus and casting index. 
However, the utility of this variable for 
identifying L. rubellus presence in the field 
is uncertain because several earthworm 
species produce casting material (Edwards 
and Bohlen 1996), and there is no apparent 
method for distinguishing among casts of 
different species. Lumbricus rubellus pres-
ence was also related to reduced cover of 
maple seedlings, increased sedge cover, 
and increased total vegetation cover, in 
agreement with previous research show-
ing substantial impacts of this species on 
forest floor plant assemblages (Hale et al. 
2006; Holdsworth et al. 2007a). However, 
other environmental factors also influence 
understory vegetation cover (e.g., deer 
herbivory, light availability, and soil pro-
ductivity) (Powers and Nagel 2008; Reich 
et al. 2012). Used by themselves, these 
vegetation cover metrics are unlikely to be 
useful for predicting L. rubellus presence. 
Further research should address whether 
incorporation of vegetation measurements 
into the 5-stage rapid assessment protocol 
can further improve its identification of L. 
rubellus invasion.

The positive relationship between L. 
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rubellus presence and midden counts at 
Wisconsin points is unexpected because L. 
terrestris is the only species in the region to 
create middens. Possible explanations for 
this correlation are that high-productivity 
forests favor high abundance of both spe-
cies or that they are introduced together. 
The latter explanation is supported by 
observations that fishing bait is a common 
vector of introduction for each species and 
that both species are often present in bait 
labeled as containing only one or the other 
species (Keller et al. 2007).

Although presence of Aporrectodea was 
inversely related to litter depth and posi-
tively related to A-horizon depth in both 
forest types, other species co-inhabiting the 
surface layers of mineral soil – L. rubel-
lus in particular – also consume the litter 
layer and increase A-horizon thickness by 
incorporating surface organic matter into 
the soil. Likewise, although D. octaedra 
presence was significantly more likely with 
increased sedge cover, other earthworm 
species and environmental factors influ-
ence this forest floor variable. Inferring 
presence of Aporrectodea based solely on 
the presence of a thick A-horizon or thin 
or absent litter layer and inferring pres-
ence of D. octaedra based on high sedge 
cover may, therefore, be inappropriate. 
Further investigation of relationships with 
A-horizon depth may allow attribution of 
varying A-horizon depths to particular 
earthworm species.

As discussed above, several environmental 
factors other than earthworms can lead to 
altered plant communities; and, further-
more, timber management activities can 
compress the litter layer and cause soil 
erosion (Yanai et al. 2000). These factors 
could result in false positive assessments of 
earthworm invasion. However, L. rubellus 
and L. terrestris have substantial effects on 
multiple aspects of the forest floor. The 
5-stage protocol, which includes measure-
ment of several variables, is less likely to 
result in false positive assessments than a 
protocol based on one or two forest floor 
measurements. Classification of points as 
earthworm-free when they are heavily in-
vaded (i.e., false negatives) is also unlikely 
given earthworms’ substantial effects and 
that other activities are unlikely to result in 

forest floors with un-altered soil, extensive 
plant cover, and a thick, intact litter layer. 
A limitation of the 5-stage protocol is that 
accurate assessment of invasion may be 
difficult when very few individuals of a 
species are present (e.g., at the invasion’s 
leading edge). This limitation is evidenced 
by our observation of small numbers 
and very low biomass of earthworms at 
points that we classified as potentially 
earthworm-free.

Recommendations for Implementing 
the 5-Stage Classification Protocol

The 5-stage classification protocol will be 
useful across a large proportion of northern 
Midwest forests. Our analysis focused on 
sugar maple and aspen-birch forests, which 
make up a large percentage of forest land 
in the region, including 51% in Minnesota 
(Miles et al. 2004) and 29% in Wisconsin 
(Vissage et al. 2004). Other regions with 
invasive earthworms (e.g., the northeastern 
United States and much of Canada) have 
many of the same European earthworm 
species, and our protocol may also prove 
effective for identifying invasions in these 
areas. Asian earthworms (Amynthas spp.) 
are also invading portions of the eastern 
U.S., and where they dominate earthworm 
assemblages, the suite of effects to the for-
est floor may be different. In these cases, 
our protocol may be inappropriate; and 
we encourage development and testing of 
similar protocols based on assessment of 
forest floor characteristics.

The 5-stage assessment protocol requires 
no previous experience with invasive 
earthworms, and relatively little training. 
Following a short training session, the 
method can be easily adopted for use by 
land managers, biological technicians, 
researchers, and citizen science monitoring 
programs. Currently, we regularly conduct 
two-hour training sessions that prepare 
surveyors to conduct assessments quickly 
and independently (see: http://www.nrri.
umn.edu/worms/research/IERAT.html); 
and, in the future, online completion of 
training will be possible. A preliminary 
survey indicated that 81% of technicians 
who had completed training finished each 
earthworm survey in less than six minutes, 

and moreover, 90% of surveyors found the 
training easy to follow and critical for ef-
fectively assessing earthworm invasion (R. 
Hueffmeier and C. Hale, unpubl. data).

Intensive earthworm sampling methods 
will remain necessary for achieving high-
precision estimates of species’ composition 
and biomass. However, these methods are 
time-consuming and may result in inac-
curate population quantification during 
unusually dry conditions when earthworms 
are less active (Edwards 1991). Classifica-
tion based on forest floor characteristics is 
less sensitive to moisture variation than 
intensive sampling methods; and, therefore, 
our protocol can be conducted throughout 
the summer. The protocol also improves 
upon other techniques by providing an 
assessment of the ecological impact of 
earthworm invasion, rather than simply 
providing a list of earthworm species 
present. Results from the rapid assessment 
protocol can, therefore, be used to indicate 
locations where rigorous quantitative sam-
pling and monitoring should be conducted 
or where land protection may be warranted. 
Furthermore, because earthworm-free and 
lightly invaded areas generally contain 
minimally altered plant assemblages, the 
rapid assessment protocol may be useful 
for targeting botanical surveys of rare and 
sensitive plant species. Depending on man-
agement objectives, the protocol allows a 
large number of points to be sampled in 
a small area to provide a high-resolution 
picture of invasion (e.g., in forest stands or 
state parks and natural areas), or numerous 
points can be sampled across a large scale 
to coarsely map invasion patterns (e.g., 
across watersheds, national forests, and 
national parks).

Budgets for management and conservation 
activities are limited. At the same time, 
it is becoming increasingly important to 
clarify earthworm impacts and to identify 
remaining earthworm-free areas in which 
to target conservation and management 
activities. The 5-stage earthworm invasion 
assessment protocol that we introduce here 
provides an efficient and effective method 
for achieving these objectives in hardwood 
forests of the northern Midwest and a 
blueprint for the development of protocols 
in other regions experiencing earthworm 
invasions.
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